Pratt & Whitney
Jeff Goldblatt

MacNeal-Schwendler
Peter Mendoza
Wim Slagter

United Technologies
Research Center
Ron Mador

Virtual Manufacturing - Forming Simulation -

AlliedSignal KCD Jim Mahoney

Lawrence Livermore
Nat'l Lab
Art Shapiro, Peter Raboin
Mike Costa

Los Alamos Nat'l Lab Bob Meier

MMES Y-12 Dave Reister Gus Aramayo

Sandia Nat'l Labs Hal Morgan Gerald Wellman

Sheet Metal Forming The Challenge

Common Forming Defects

- Wrinkling
- Tearing
- Excessive Thinning
- Springback

Current Sheet Metal Forming Practices are Costly

- 1 to 2 billion/year in die design and construction by the US automotive industry
- Hundreds of millions per year spent on trial & error
- Typical time to develop dies is 12 to 18 months
- Comparrison with 2D disk forging
 - » 6 months for die design empirical
 - » 1 week for die design analytical

Sheet Metal Forming Simulation The Benefits & The Issues

Computer Simulation Has Enormous Potential

- Reduce empirical trial & error
- Lower development costs
- Improve quality while reducing scrap
- Reduce time to market

Current 3-D Simulation Limitations

- Computational efficiency
- Model generation (CAD to finite element model)
- Material models
- Ability to represent physical phenomena

VM Forming Activities Evaluation of FEA Codes (2D)

- Focused on Prediction of Springback
- Two Applications Investigated (3 Point Bending & Stamping)

- Six FEA Codes (both commercial & government developed)
 Exercised in a Blind Benchmark
 - ABAQUS Explicit & Standard
- MSC/DYTRAN

- DYNA3D/NIKE3D

- NIKE3D

- JAS3D

- PAM STAMP
- Solutions Compared with Experimental Data and Computational Results from EPDAN, INDEED, and MARC

VM Forming Activities Evaluation of FEA Codes (3D)

Identified Industry Demonstration

Part

- FEA Codes Being Applied
 - ABAQUS Coupled
 - MSC/DYTRAN
 - NIKE3D

- Other Codes Being Utilized
 - Unigraphics
 - I-DEAS
 - Pro/Engineer
 - MSC/PATRAN

VM Forming Activities Status

Progress to Date

- CAD data provided to participants via Ludwig
- FEA models built
- Analysis underway

Lessons Learned

- CAD to FEA is major issue
- Culture change required
- File encryption/decryption

Forming Panel Mesh - Die Set/Stationary Side

Forming Panel Mesh - Die Set/Moving Side

Conclusions

- Accurate Material Models are Critical & Essential
- CAD to FEA is a Major Issue
- File Encryption/Decryption Represents Problems
- Measured Current State-of-the-Art in Sheet Metal Forming Analysis Software
- Accurate Springback Prediction is Possible
- Sufficient Capability Demonstrated to Proceed
- Defining Requirements for ICLP Controller Activities is the Goal

VM Forming Activities Information Flow

Downstream Flow

- Forming information to ICLP
 - » blank holder pressure
 - » pressure vs. displacement
- Cycle time & requirements information to Enterprise Modeling

Upstream Flow

- Die design information to PDEC
- Design for Manufacturing
- Cost information

